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1. I n t r o d u c t i o n  

The study of linear spaces of matrices having certain non-invertibility proper- 

ties has a long history. Some interesting lines of investigation were studied by 

Dieudonn~ [Di], Flanders [F], Gerstenhaber [G], and Motzkin-Taussky [MT1, 

MT2]. They consider, respectively, the spaces of singular matrices, matrices of 

bounded rank, nilpotent matrices, and diagonalizable matrices. Although it is 

not our intention to give here a complete list of references on the subject, it 

may be worth pointing out the combinatorial approach to the problem due to 

Brualdi and Chavey [BC] yielding both results of Flanders' and Gerstenhaber's 

type. These problems often seek for the maximal possible dimension of a linear 

space of matrices having certain properties and it turns out that the spaces with 

this maximal dimension have an interesting structure ensuring the matrices in 

the space to fulfill the required properties. Some of these problems are quite 

involved and require deep techniques such as algebraic geometric tools. Addi- 

tional algebraic structure on the linear space of matrices is often imposed. In a 

recently studied problem (cf. [At], [OS], [LR]) of linear spaces of square matrices 

whose number of eigenvalues is bounded by a certain number k, the maximal 

dimension and the corresponding structure of spaces have been determined only 

for the cases of either k small or k close to the order of the matrices. Since the 

corresponding problem for (associative) algebras of matrices is trivial, the study 

of maximal objects with this property within a certain non-associative variety of 

matrices may shed some light on the problem. Here we give a complete answer 

to the corresponding question for Jordan algebras of matrices. 

Let F be an algebraically closed field of characteristic other than 2. For n _> 1 

the (associative) algebra Mn (F) of n x n matrices with entries in F is a Jordan 

algebra for the standard J o r d a n  p r o d u c t  A o B -- ½ (AB + BA). It is an easy 

observation that a linear subspace L C Mn (F) is a Jordan subalgebra if and only 

if A 2 E 12 for all A E 12. It then follows that a Jordan algebra 12 of matrices 

is closed under arbitrary powers, and hence is polynomially closed. A linear 

subspace 12 c Mn (F) is called i r r e d u c i b l e  if 0 and F n are the only common 

invariant subspaces for all A C 12. We say that a subspace 12 of the matrix algebra 

Mn (F) has property (Pk) if none of the members of 12 has more than k distinct 

eigenvalues and there is a member of 12 with exactly k distinct eigenvalues. In 

this paper we determine all maximal Jordan subalgebras of M,~ (F) with property 

(Pk), k > 2. 

For k > 3 the only maximal irreducible Jordan algebra with property (Pk) is 

the full matrix algebra Mk (F). The case k = 2 turns out to be exceptional and 
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nontrivial. It exhibits a family of maximal Jordan algebras with an interesting 

structure. For each n _> 1 we obtain, up to similarity, one maximal irreducible 

Jordan algebra Jn  with property (P2) in the set of matrices of order 2 n. We 

study irreducible Jordan algebras with property (Pk) in sections 2 and 3. Before 

proceeding with the general, not necessarily irreducible case, we investigate the 

automorphisms of two special types of Jordan algebras. In section 4 we charac- 

terize the automorphisms of the Jordan algebras of all strictly upper-triangular 

matrices and the automorphisms of Jordan algebras of upper-triangular matrices 

that contain all strictly upper-triangular matrices. In section 5 we characterize 

the automorphisms of maximal irreducible Jordan algebras with property (Pk). 

These characterizations of automorphisms are of independent interest. We also 

use them in section 6 to list all non-isomorphic irreducible Jordan algebras with 

property (Pk) and some reducible algebras of that kind. 

We assume the algebraic closure of the underlying field F so that the spectral 

projectors and the corresponding nilpotents of elements in J exist over F and 

hence are elements of J .  It would be enough to assume that all the eigenvalues 

of elements of ,7 belong to F. 

In the proofs we use methods of matrix theory and linear algebra. Our results 

could be interpreted also using techniques of Jordan algebras. For the benefit 

of people familiar with Jordan algebras we do so in the following paragraph. 

We include a few remarks later in the paper. However, we prefer to work with 

matrices: The original problem was posed in the language of linear algebra, and, 

in our results, we exhibit a special form of matrices (e.g., the fractal structure of 

irreducible Jordan algebras with property (P2), block upper-tringular structure 

of general maximal Jordan algebras with property (Pk), etc.). 

A Jordan algebra J is called r e d u c e d  if its identity element 1 is a sum of 

absolutely primitive idempotents. An idempotent e is a b s o l u t e l y  p r i m i t i v e  if 

e ~ 0 and every element in e,Te is of the form ae + z, where a E F and z is 

nilpotent. Two idempotents e and f are o r t h o g o n a l  if e o f = 0. If J is a 

Jordan subalgebra (with identity) in Mn(F)  then it is a reduced Jordan algebra 
t [J3, Thm. 4, p. 197]. Moreover, the identity element I is equal to the sum ~ i=1  ei 

of orthogonal absolutely primitive idempotents ei. Following Albert [A1, A2] we 

call the number t the d e g r e e  of J .  (It is called the c a p a c i t y  in [J3, p. 158].) If 
t aj ,  j --- 1, 2 , . . . ,  t, are distinct scalars then ~]i=1 o~jej has t distinct eigenvalues 

and therefore t ~ k. On the other hand, if a E J has k ditinct eigenvalues then 

its spectral projectors Pj, j = 1, 2 , . . . ,  k, form an orthogonal set of absolutely 
k primitive idempotents such that I = ~ j = l  PY- This implies that k _< t, and thus 
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k = t. Jordan a lgebra/7  has the Peirce decomposition /7 = ~-~-i_<j ~ J  relative 

to the idempotents ei. Here 3~i =- ei/Tei and 3~j = ei,Tej + ejJei if i ~ j 

[J3, pp. 197-198]. By the Albert-Jacobson-McCrimmon Theorem [J3, p. 198] 

/7~i = Fei + Af/~, where Af/i is the set of nilpotent elements of ~7~i and is an 

ideal in /7. I f i  ~ j thenAf~j = {x E J~j: x o ~ j  = 0} is the set of absolute 

zero divisors in ~ j ,  it is an ideal in ,.7" such that x c y = 0 for x,y E Afij, 
and J~j = ( ~  + ,~j  + ~ j )  / (Af/i + Afjj + Af/j) is semisimple (see [J3, Whm. 4, 

p. 160]). An element x is an a b s o l u t e  ze ro  d iv i sor  if x J x  = 0. In the same 

way as it is done in the proof of the First Structure Theorem in [J3, pp. 161-162] 

we show t h a t / 7  = ~i<_j/7iJ is a direct sum of simple algebras, say ,7 = ~-~i=1 i, 

where ,4i are simple Jordan algebras. By the principle of lifting of idempotents 

[J3, III.7, pp. 148-151] it follows that /7 = ~-~=1 A~ + ~_<j  Afij, where Ai are 

simple algebras. Now the Albert Structure Theorem [J3, p. 204] gives all the 

possible finite-dimensional simple Jordan algebras over an algebraically closed 

field. We show in §2 which of Jordan algebras corresponding to a quadratic form 

can occur in degree 2 and in §3 that if the degree of Ai is not 2 then J[i is 

isomorphic to Mk~ (F) for some integer ki. 

2. Maximal irreducible Jordan algebras with property (P2) 

For a block-matrix 
A = ( A 1  A 2 )  

A3 A4 e M2,~(F), 

where each Ai is in M,(F), we define a blockwise adjoint matrix 

-A2 
-A3 " 

It is obvious that  the operation ^ is an involution, i.e., that  A = A. 

For l = 1,2, 3 , . . .  we define subsets N c M2~(F) inductively as follows: & = 

M2(F) and for l > 2 

It follows from the inductive definition that ~ is closed under the operation ". 

For .4 E/Tt we write T(A) and d(A) for its trace and determinant. For 1 >_ 2 and 

A=- flI e ~  
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we define a linear form T: J) --+ F by r(A) = c~ + fl and we define inductively a 

quadratic form d: ~ --+ F by d(A) = ~/~ - d(B). We call ~- the t r a c e  f o r m  of 

o~. Observe that A + A = ~-(A)I and AA = d(A)I. 
Note that there is no irreducible Jordan algebra of matrices in M,~(F) with 

property (P1) for n _> 2. For, if a Jordan algebra A C Adn( f )  satisfies (P1), it 

is triangularizable by a theorem of Jacobson [R] (see also [J2, Thm. 2, p. 35]), 

and hence is not irreducible for n > 2. 

PROPOSITION 2.1: For ~11 1 the set ,~ is an irreducible Jordan algebra with 
property (P2). 

Prod." It is easy to see inductively that ~ is a linear subspace. Thus, to prove 

that it is a Jordan algebra it suffices to show that it is closed under squares. A 

direct computation gives A 2 - "r(A)A + d(A)I = 0 for all A C ~ .  This shows not 

only that ~ is closed under squares, but also that each of its members satisfies 

a quadratic equation. Since 

(o, 0) 
0 E , ~  

has two distinct eigenvalues if a ¢ fl, it follows that ~ has property (P2). It 

remains to show that it is irreducible. This is clearly true for 1 = 1. Now, for 

1 > 1 let U be a nontrivial subspace of F 2.+~ invariant under ~+1,  Since the 

matrices (,00) (00 0 ' 0 I ) a n d  ( 0 i i  O) 

a l l b e l o n g t o , ~ + l ,  i t f o l l ows tha t fo reach  ( y ) C U a l s o  ( ; ) ,  ( ; ) a n d  (Y)x 

u ,oo to  hus s cU (0)  
in U, is nontrivial. It is an invariant subspace for all B c o~, because 

(o (0x) 
The irreducibility now follows by induction. | 

PROPOSITION 2.2: For all l the set ~ is a maximal Jordan algebra of matrices 
with property (P2). 

Proof: The proposition is clearly true for l = 1. We proceed by induction. 

Assume that 3 is a Jordan algebra with property (P2) and that it contains ~+1.  
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We define 

AA= AI: there areAe,A3,  A 4 s u c h t h a t  A3 A4 E 3  

and 

A t =  A2: there areA1,A3, A 4 s u c h t h a t  A3 A4 e 3  • 

°) We will show first that A~ has property (P1). Let P be the projection 0 " 

Since P E 3 and PAP = 2Po (Po A) - Po  A for A E 3 it follows that PAP 
belongs to 3 .  It is clear now that ~4 is a Jordan algebra and that  I E AA. So, 

if M contained a matrix with two distinct eigenvalues, then it would contain a 

matrix with two distinct nonzero eigenvalues, and consequently, 3 would contain 

a matrix with 3 distinct eigenvalues, which is a contradiction. Thus M has 

property (P1). Next, we will prove that Ad contains only scalar matrices. We (0 '0) (oi denote by Q the matrix . I f X  E A~ and B fiI C ~+1 it 

follows that  (0x 
and 

io  li 
(e~+~)I X B + B X )  =2 ~ I ) ° (  OX X ) .  

Therefore B X + X B  is in M for all B in 5 .  However, B = T ( B ) I - B  and so we 

have that  B X  - X B  is in M.  Since M is a Jordan algebra with property (P1), 

it is triangularizable by a theorem of Jacobson [R] (see also [J2, Tam. 2, p. 35]). 

It follows that the intersection U of all kernels of nilpotent matrices from M is 

a non-trivial subspace of F 2t . Also, for any nilpotent N E M it follows that 

NB - BN  is also a nilpotent matrix in J~4 (because its trace is zero), so that  

NBu =- 0 for all u C U. This implies that U is invariant under ~ and therefore 

by induction equal to F 2~. So, M contains only scalar matrices. Finally, choose 

any matrix of the form (0 
A =  y E 3 .  

Then, A o Q E 3 .  So X + Y belongs to M and it is equal to a scalar matrix, 

say )~I. But then A o A E 3 ,  and so X Y  = X()ff  - X) also belongs to .M and 

is equal to a scalar matrix, say #I.  It follows that every member of N" satisfies 

a quadratic equation, namely X 2 = ~X - ttI CAf.  Therefore, Af is a Jordan 

algebra. Since it contains 5 ,  it is equal to it by induction. | 
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THEOREM 2.3: I f  ,.7" is a maximal  irreducible Jordan algebra of  matrices in 

M n ( F ) ,  n > 2, which has property  (P2) and contains I, then n = 21 and ,7 

is s imultaneously  similar to a 3 .  

Proof: Let 3, be an irreducible Jordan algebra containing the identity matrix 

I.  We proceed by induction. If n = 2 the theorem is clearly true. Assume that 

n > 3. Since 3" has property (P2) there is a matrix in 3, with two eigenvalues. 

Consequently, there is a non-trivial idempotent P in 3, since J is closed under 

arbitrary powers, hence polyimially closed, and since every spectral projection is 

a polynomial in the matrix. With respect to the block decomposition in which 

0 we define 

AN = AI: there are A~,Aa,  A4 such that A3 

and 

A1 
Note that for each matrix A = A3 

A2 

A2 { (" Af = A2: there are AI,A3,A4 such that A3 

A4A2 / in J the matrices 

A2 0 
0 ) and ( 0  0 A4)  

also belong to 3,. Arguments similar to those applied in the proof of Proposition 

2.2 show that f14 satisfies (PI), and by a theorem of Jacobson [R] (see also [J2, 

Thm. 2, p. 35]) we may therefore assume that AN is in the upper triangular form. 

Observe that, by symmetry, the set 

also satisfies (Pl). 
In order to prove that AN consists of scalar matrices only, we need to show first 

that  the set 
0 712 

contains an invertible matrix. Assume to the contrary, that all the matrices in 

1~ are singular. Then, the same is true for their squares 

(o ..). o) 
A3 0 = AaA2 " 
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Since A2A3 and A3A2 each have just one and necessarily the same eigenvalue, 

this eigenvalue has to be zero. So, they are nilpotent. Denote by/2  the set of 

matrices 

A3 A4 

in J such that A1 and A4 are nilpotent. Since the diagonal blocks of the matrix 

A 2 are equal to A T +A2A3 and A~ + AaA2, they have trace zero and therefore are 

nilpotent. This implies that the set/2 is a Jordan algebra of trace zero matrices. 
It follows that for each of them the traces of all its powers are zero. Thus, they are 

all nilpotent and/2 is simultaneously triangularizable. Let U be the (necessarily 

non-trivial) intersection of all kernels of elements of/2. Since with any matrix 

A3 A4 

in/2 the matrices 

0 A2 0 A0)  
(A01 00)' (A3 0 ) a n d  ( 0  

also belong to /2, it follows that PU and (I - P)U are subspaces of U. It is 
clear that  J is generated by/2, P,  and I, so it follows that U is invariant under 

,7. Thus, by irreducibility of J the subspace U is equal to the whole space and 

/: = {0}. Again by irreducibility ,7 contains a matrix 

A2 

with A2 ¢ 0 and hence a nonzero matrix A of the form 

Since A E/2 -- {0} we get a contradiction. This proves that the set /C contains 

an invertible matrix A of the above form and that n is even, say n --- 2m. As 

above, we see that the square of A has only one eigenvalue. Assume with no loss 

of generality that it is 1, so that A2A3 -= I + N for some nilpotent matrix N. 

Let W be the inverse of the square-root of I + N and observe that this matrix is 

in M.  Then, 

A3W 0 

belongs to/C and its square is equal to I.  So, we may assume with no loss of 

generality that a matrix of the form 

( 0 
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belongs to /C. By taking a block-diagonal similarity not affecting the upper 

triangularity of elements of A/t, we may assume that ~ contains the matrix 

Q = ( 0  
I I0)" 

It follows that the set 7 ~ is equal to 34. The intersection U of all the kernels of 

nilpotent matrices from 3d is a non-trivial subspace of Fm. For any matrix 

A3 0 

in/~, the matrix A2 + A3 leaves U invariant and acts as a scalar matrix on it. 

Since/~ contains Q, we may choose the scalar to be 0. Now, for any nilpotent 

matrix W in A4, the matrix 

(0 
A3W 0 

belongs to/C, so that the matrix WA2 + A3W leaves the subspace U invariant 

and acts like a scalar matrix on it. However, this matrix is equal to the matrix 

WA2 - A2W on U, and since the latter matrix has trace zero, the scalar has 

to be zero. It follows that A2 and by symmetry also A3 both leave the space 

U invariant, so that U • U is a nonzero invariant subspace for ,.7 and hence 

U = Fm. So, M contains only scalar matrices. With an argument similar to 

that in the proof of Proposition 2.2 we now show that every member of Af satisfies 

a quadratic equation and that it is an irreducible Jordan algebra containing I. 

By induction it has to be equal to ,~ for some l and therefore/T = 5+1.  | 

3. M a x i m a l  i r r e d u c i b l e  J o r d a n  a lgebras  w i t h  p r o p e r t y  (Pk), k > 3 

First we prove a result for general irreducible Jordan algebras. In particular, it 

applies to the Jordan algebras 5 .  

PROPOSITION 3.1: If £ C Mn(F) is an irreducible Jordan algebra then it is 

simple. 

Proof: Let 7~ be the radical of ft.. It consists of nilpotent elements only [J3, 

p. 192]. By a theorem of Jacobson [R] (see also [J2, Thm. 2, p. 35]) it is triangu- 

larizable. Thus TCF n ¢ F n. Since A o R = ½ (RA + AR) for A C 1: and R E 7¢ it 

follows that "RF n is an invariant subspace for £. By irreducibility it is equal to 

0, and therefore 7¢ = 0 and £ is semisimple. If it was not simple then for each 
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nontrivial ideal Z C £ we would have that ZF n # F '~ is invariant subspace for 

£. But this is not possible, and hence t: is simple. | 

Next we apply the structure theory for simple Jordan algebras developed by 

Albert and others [A1, A2, J3]. Assume that  A is a maximal irreducible, hence 

simple, Jordan algebra with property (Pk), k > 3. Because A has property (Pk) 

it follows that the identity matrix I in A is a sum of k nonzero idempotents Pj 

in A such that P~ o Pj = 0 for i # j and it is not a sum of k + 1 idempotents with 

these properties. Thus the degree of .4 is equal to k. Corollary 2 of [J3, p. 204] 

implies that the only maximal irreducible algebras of degree k, k > 3, are Mk(F) 

and $k = {A E M2k: A = p A T p - 1 } ,  where P is a block diagonal matrix with 

a l l d i a g o n a l b l o c k s e q u a l t o E =  (01 -01). I f a j ,  j = l , 2 , . . . , k ,  arenonzero 

2 scalars such that a j  are distinct then the block diagonal matrix 

l 
a l E  0 . . .  0 

i a2E .. • 0 • . .  " 

\ 0 . " O~kE 

is an element of Sk with 2k distinct eigenvalues + ~ / - c ~ ,  j = 1, 2 , . . . ,  k. There- 

fore Sk does not have property (Pk). Actually, if F is algebraically closed the 

degree of Sk is 2k and Sk does not occur in the classification theorem. This 

proves the following result• 

THEOREM 3.2: If  A is a maximal irreducible Jordan algebra of matrices in 

Mn(F),  n ~_ 3, which has property (Pk), k _7 3, and containing I, then n = k 

and ,4 = Mk (F). 

4. Automorphisms of upper-triangular Jordan algebras 

Before we list, up to simultaneous similarity, maximal Jordan algebras with 

property (Pk) we study isomorphisms of certain special Jordan algebras. We 

use the results to avoid duplications in the list. 

Let us introduce some notation. We write 

/i A°I)(ili) • " • 1 " .  " •  

J = . and N = " " 
* "  0 " " *  

. . .  0 0 . . .  
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and we denote by Eij the basic matrix with zero entries everywhere except a 1 

at the ( i , j )  entry. Note that J is an involution, i.e., j2  = I. I f /4  is the Jordan 

algebra of all upper-triangular matrices in M,~ (F) then we call the automorphism 

~(A)  = J A T J  for A C /4 t h e  flip. The proof that ~ is an automorphism is 

straightforward. Finally, if X is a nonempty subset of a vector space V we 

denote by £ (X)  the linear span of X in V. 

THEOREM 4.1: Let A be Jordan algebra of  all strictly upper-triangular matrices 

in M n ( F )  and let ~: .4 -+ .4 be an automorphism. I f  n = 3 then either 

¢ (A)  = T A T  -1 for all A E A 

o r  

~b(A) = T ~ ( A ) T  -1 for all A E ~4, 

where T is an invertible upper-tringular matrix  and qo is the flip. I f  n >_ 4 then 

either 

¢ (A)  = T A T  -1 + 6(A)EI~ for all A E .4 

o r  

¢(A) = T ~ ( A ) T  -1 + 5(A)E~,~ for all A C A,  

where T is an invertible upper-triangular matrix, qo is the flip and 5: A -+ F is a 

linear map such that 6(~4 2) = 0. 

Proof: Let us first show that the above maps are automorphisms of A. If we 

have ¢(A) = T A T  -1 + 5(A)EI~ then we obtain 

¢(A o B) = T ( A  o B ) T  -1 + 6(A o B )E ln  = T ( A  o B ) T  -1 

= ( T A T  -1 + 5(A)Eln)  o ( T A T  -1 + 5(A)Eln)  = ¢ (A)  o ¢ (B) .  

The second case now follows since ~ is an automorphism. 

Conversely, we will show that every automorphism is of the above form. Since 

is a Jordan isomorphism, it preserves powers, so that ¢ ( N )  is a nilpotent of 

order n -  1. After an upper-triangular similarity we may assume that ¢ (N)  = N. 

Now, we introduce the matrix N1 = N - El ,  where E1 = El2. It follows easily 

that for a in the underlying field the matrix N1 + aE1 is nilpotent of order no less 

than n - 2  and is of order n - 1  if and only i ra  is nonzero. So, ¢(N1)+a¢(E~)  has 

the same property. Denote the consecutive entries on the first upper-diagonal of 

¢(N1) by xl, x2 , . . . ,  x~- I  and the consecutive entries on the first upper-diagonal 



64 L. GRUNENFELDER ET AL. Isr. J. Math. 

of ¢(E~)  by y~, Y2, . . - ,  Y~-~. The consecutive entries on the (n - 2)-th upper  

diagonal of  the (n - 2)-th power of ¢(N1)  + a¢ (E1)  are equal to 

p ~-~ (Xl -~- ayl)(X2 -~- ay2) '"  ( x n - 2  + ay,,-2) 

and 

while the (1, n) entry of the (n - 1)-st power of ¢ (N1)  + a¢ (E1)  is equal to 

r ~-~ (Xl + ayl)(X2 + ay2).'. (xn-1 + aye,-1). 

Since ¢ is bijective and ¢ ( N  n - l )  = N n-1 we conclude tha t  for a = 0, r = 0 and 

either p ¢ 0 or q ¢ 0. Hence, all the entries on the first upper  diagonal of ~P(N1) 

are nonzero, except for either the first one or the last one. After applying the 

flip to A, if necessary, we may assume tha t  the zero occurs in the (1, 2) entry. 

Considering ¢ ( N 1 ) +  a¢ (E1)  for nonzero a we conclude tha t  ¢ (E1)  has a nonzero 

(1, 2) entry and no other  nonzero entries on the first upper  diagonal. Apply  now 

the fact tha t  ¢ ( N )  = N to see tha t  ¢ ( E 1 )  --  E l + X ,  and ¢(N1)  = N1 - X ,  where 

X is a strictly upper  t r iangular  matr ix  with zeros on the first upper  diagonal. 

Now, we will show tha t  we may assume with no loss of generality tha t  all 

the entries of the first row of X are zero. To this end we introduce an upper  

t r iangular  matr ix  S of the form S = I + a i N  + a 2 N 2 +  - . .  + a n _ i N  n-1 .  Consider 

the first row of S ( N 1  - X ) .  After omit t ing its first two entries, this row is equal 

to  

1 . . . .  X a n  

- -  ( X 1 3  X14 "'" X l , ,  ) + ( a l  a2 . ' .  a , , - 2  ) . . .  . • 

0 . . .  1 

I t  is clear tha t  we can find parameters  aj so tha t  the above row equals zero. 

I t  follows tha t  the matr ix  S ( N 1  - X ) S  -1  has zero first row. Observe tha t  this 

similarity does not change N.  

Next, assuming tha t  X has zero first row, we show tha t  it must  actually be 

equal to  zero. This will be shown inductively by rows. The fact tha t  E 2 is zero 

implies 0 = (El  + X)  = = E1 o X + X =. It  follows tha t  the second row of X is 

equal to zero. Assume tha t  we have already seen tha t  the first k + 1 rows of X 

are equal to zero and define Ek+l  = E1 o N k, so tha t  ¢ (Ek+l)  --- (El  + X ) o  N k = 

E k + l  + X o N k. From E1 o E k + l  = 0 we get 0 = (El  + X)  0 (Ek+l + X o N k) = 

Ek+l o X + E 1  o ( X o N  k) + X o ( X o N  k) = 2Ek+IX + X o (X oNk). Only the first 



Vol. 128, 2002 MAXIMAL JORDAN ALGEBRAS OF MATRICES 65 

te rm of this last sum may  have non-triviM first row equal to the (k + 2)-th row 

of X thus proving the desired conclusion. We may  now assume tha t  ¢ preserves 

the first row and ¢(N1)  = N1. 

The produc t  EkA is zero except for its first row which is equal to the k-th row of 

A. Because EkA = EkoA it follows tha t  EkA = ¢(EkoA) = Eko¢(A) = Eke(A).  

Now, 
0 

where C is a strictly upper  tr iangular matr ix  of order n - 1. For A C A we define 

a linear map X: ~4 ~ ,,4 by 

x(A) = ¢ (A)  - A. 

So far our discussion shows tha t  X has the following properties: 

(1) the matr ix  x(A) for A E .4 is zero everywhere except possibly in the first 

rOW, 

(2) Bx(A)  = 0 for all A, B E A, 

(3) x ( N  k) = 0 for k = 1 , 2 , . . . , n -  1, 

(4) x(N~) = 0 for k = 1 , 2 , . . . , n -  2, 

(5) x(Elj)  = 0 for j = 2 , 3 , . . . , n .  

Note tha t  if n = 3 these properties imply tha t  X = 0. Therefore ¢ has the 

required form in the case n = 3. 

In the rest of the proof  we assume tha t  n > 4. First we will establish some 

further properties of X: 

(6) x (A 2) = x(A)A for A C A, 

(7) x(A o B) = ½ (x(A)B + x(B)A)  for A, B E ,4, 

(8) x(E~,i+k) = x(Ei#+l)Ei+l#+k + x(Ei+l,i+k)Ei#+l for i = 2, 3 , . . . ,  n - 2 

and k = 2 , 3 , . . . , n - i .  

I f  we use the definition of X and proper ty  (2) we see tha t  

x (A  2) = ¢ ( A  2) - A 2 = ¢ (A)  2 - A 2 = (A + x(A))  2 - A 2 = x(A)A. 

Thus we have proved (6). Then (7) follows easily from (6) by replacing A by 

A + B,  and (8) is a consequence of (7) and of elementary properties of the basic 

matrices Eij. 

Next  we s tudy  in detail the matrices x(Ei,i+k) for i = 2, 3 , . . . ,  n -  1 and 
• [ h i k ]  n k = 1, 2, . . ,  n - i. We denote the first row of x(Ei,~+k) by L j Jj=l. We proceed 

by the descending induction on k to show tha t  x(E~,~+k) = 0 for i = 2, 3 , . . . ,  n - l ,  

k = 2 , 3 , . . . , n -  1, and that  h} 1 = 0 for i = 2, 3 , . . . , n -  1, j = 1 , 2 , . . . , n -  1. 
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For  k = n - 2 observe t ha t  E2n = N ~  -2  and so p r o p e r t y  (4) implies  t ha t  

x(E2n) = O. Our  induct ive  hypothes is  is t ha t  x(Ei,i+k,) = 0 for k' > k >_ 1. 

Prope r t i e s  (7) and  (3) imply  t ha t  

x(Ei#+k o N)  -- ~ (x(Ei#+k)N + )c(N)Ei#+k) -- x(Ei,i+k)N. 

On the o ther  hand,  since Ei,i+k o N = ½(Ei,i+k+l + Ei-l,i+k), the  induct ive  

hypothes is  implies  t h a t  

x(Ei,i+k o N)  = ~X (Ei-l,i+k + Ei,i+k+l) = O. 

Hence, it  follows tha t  h} k -- 0 for j = 1, 2 , . . . ,  n - 1. 

If  k > 2 then  compar ison  of the  r ight  most  entries in the  first row on b o t h  

sides of (8) shows t ha t  h~ k = 0 and therefore )l(Ei,i+k) = 0 for i < n - k. Now 

) app ly  p rope r ty  (4) to get 0 = x(Nkl) = X ~i=2 Ei,i+k = x(En-k,n) .  

The  induct ion  process above t e rmina te s  when k = 1. F rom its  resul ts  and  

p r o p e r t y  (5) we conclude t ha t  )/(A) = 6(A)N '~-1, where 6: A ~ F is a l inear  

funct ional  such tha t  (~(Ei,i+k) = 0 if i = 1 and k > 1 or 2 < i < n - 2 and k > 2. 

In  par t i cu la r ,  we see t ha t  5(A 2) = O. | 

Remark 4.2: Two comments  are in order.  F i r s t  note t ha t  x(A)  -- 6(A)Eln in 

the  p roof  of Theorem 4.1 defines an endomorph i sm of ~4. The  second observat ion  

is t h a t  in the  s t a t emen t  of Theorem 4.1 we may  not  only  assume tha t  (~(fl[2) = 0 

bu t  also t ha t  6(N) -- 5(N1) = 0. 

COROLLARY 4.3: Suppose that A is a maximal nil Jordan algebra in Mn(F) ,  

n >_ 3, and ¢:  A -~ A is an automorphism. I f  n = 3 then ¢ is a similarity or a 

composition of a similarity and  the flip. I f  n ~ 4 then ¢ is a composition of a 

similarity, a trivial perturbation of the identi~y and,  possibly, of the flip. Here by 

a trivial perturbation of the  identity we mean a map A ~-~ A + 6(A)e ® f ,  where 

6 is a functional on A such that 6(,4 2) = O, and e, f are  such that £(e) is the 

common kernel of A and L:(f) the common kernel of A*. 

Proof." A m a x i m a l  nil Jo rdan  a lgebra  is s imul taneous ly  s imilar  to the  Jo rdan  

a lgebra  of all s t r ic t ly  uppe r - t r i angu la r  mat r ices  in Mn(F) .  The resul t  is then  a 

consequence of Theorem 4.1. | 

LEMMA 4.4:  Suppose that B is a Jordan subalgebra of the Jordan a lgebra  of 

all upper-triangular matrices in M n ( F ) ,  n >_ 3, such that B contains the Jordan 
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algebra .4 o f  all s t r ic t ly  upper-triangular matr ices  and  tha t  ¢ :  B --~ B is an 

automorphism.  Then  for each pair D,  A,  where D is a diagonal m a t r i x  in 13 and  A 

is an element  o f  A there  exists  a m a t r i x  A ~ E .4 such that  ei ther ¢ (  D +  A ) = D +  A t 

or  ¢ ( D  + A) = ~ ( D )  + A' .  

Proo~ Since ¢ is an a u t o m o r p h i s m  it preserves powers and  thus  ni lpotents .  

Therefore,  it  maps  A onto itself. Let  ¢ be the  res t r ic t ion  of  ¢ to ~4. By Theorem 

4.1 it follows t ha t  e i ther  '~(A) = T A T  -1 + 5 ( A ) N  '~-1 for all A E ,4 or ¢ ( A )  = 

T ~ ( A ) T  -1 + 5 ( A ) N  ~-1 for all A E A. We drop the p e r t u r b a t i o n  pa r t  and  we 

denote  the  obvious extension to B by o, i.e., e i ther  a ( B )  = T B T  -1 for all  B E B 

or a ( B )  = T ~ ( B ) T  -1 for all  B E B. (Note t ha t  if n = 3 the  p e r t u r b a t i o n  pa r t  

does not  occur.)  I t  is easy to  check t ha t  c~ is an au tomorph i sm.  Let  X = a - 1 ¢  • 

Then  x (A)  = A + a N  n-1 for all A E A and some scalar  a (depending  on A). If  

we take  A E B then  we have 

x ( A  o N j )  = x ( A )  o N j + c~jN n-1 

for j = 1, 2 , . . . ,  n - 1 and  some scalars  a j .  We choose 

in B and we wri te  

A = 
a 2  - . .  

o . .  

o° . 

bl * "-" * \ 
0 be " "  * ) x ( A )  = . . . . 

0 0 . . .  bn 

The  previous  re la t ions  imply  tha t  aj + aj+l = bj + bj+l for j = 1, 2 , . . . ,  n - 1 and 

l = 1, 2 , . . .  n - 2. If  n = 3 then  there  is no p e r t u r b a t i o n  and these equal i t ies  hold 

f o r l = 2  as well. Now in case of a n y n  >_ 3 we conclude t ha t  aj = bj for a l l j .  

Since X has the  p r o p e r t y  required in the  l emma  it follows tha t  ¢ has it as well. 
| 

THEOREM 4.5: Suppose that  Ll is the Jordan algebra o f  all upper-tr iangular 

matr ices  in Mn (F) ,  n >_ 3, and that  ¢: Ll --+ I t  is an au tomorphism.  Then ei ther 

¢ ( A )  = T A T  -1 for all A E bt 

o r  

¢ ( A )  = T ~ ( A ) T  -1 for all A E 14, 
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where T is an invertible upper-tringular matr ix  and ~ is the flip. 

Proof: We begin as in the proof  of Lemma 4.4. Let ¢ be the restriction of ¢ 

to at, the Jordan  algebra of all strictly upper- tr iangular  matrices• By Theorem 

4.1 it follows tha t  either ~(A)  = T A T  -1 + 6 (A )E ln  for all A E at or ¢ (A)  = 

T~o(A)T -1 + 5 (A )E l n  for all A e at. We drop the per turba t ion  par t  and we 

denote the obvious extension to /4  by a,  i.e., either a ( B )  = T B T  -1 for all B E/4  

or a ( B )  = T ~ ( B ) T  -1 for all B C H. In the latter case we replace ¢ by ~v¢ to  

unify the rest of the proof. By Lemma 4.4 the image ¢ ( E i )  of the basic matr ix  

El = E/i, i = 1, 2 , . . . ,  n, has the same diagonal as Ei. Since E~ is an idempotent  

and ¢ preserves squares it follows tha t  the i th row is the only nonzero row of 
Tt 

¢(E i ) .  Because ~ i = 1  Ei = I and ¢ ( I )  = I it follows tha t  ¢(E~) = Ei and 

therefore ¢ maps diagonal matrices to diagonal matrices• 

Now let X = a - 1 ¢  • For A c at we have x ( A )  = A + 5~(A)N n - l ,  where 5' is a 

linear functional such tha t  5~(at 2) = 0. We will show tha t  5'(at) = O. Choose a 

matr ix  

0 a2 " "  0 

A ~ " . .  " , .  " 

0 0 "'" an-1  
0 0 . . .  0 

in at. Then  for each diagonal matr ix  

D = 

dl 0 . . .  0 \ 
0 d2 "-" 0 ) " . • •  " 

0 0 "'" dn 

we have 

x ( A o D )  = 

( al dl+d2, 0 -.. b ) 
0 a2(d2-4-d3) • ' •  0 

• . . .  * • .  ° 

0 0 " "  a~- l (d ,~- i  + d n )  
0 0 0 . . .  0 

(i a100 a2 ) 2  
• • O 

0 0 a 1 0 
0 0 
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i al(dl +d2) 0 . . .  a(dl +dn) 
0 a 2 ( d 2 + d 3 )  " '"  0 

0 0 "'" an- l (dn- l+d~)  
0 0 .." 0 

where a = St(A) and b = 5t(A o D). We choose the diagonal entries of D so 

that di + di+l = 1 for i = 1, 27 . . . , n  - 1 and dl + dn = 2. Then we obtain 

x(A o D) = x(A) and it follows that 2a = at or a = 0. We conclude that X = id 
and the proof is complete. | 

5. Automorphisms of  maximal  irreducible Jordan algebras with 
p r o p e r t y  (Pk) 

First we consider the case k = 2, i.e., Jordan algebras ~ ,  l > 1. Jordan algebra 

is a simple Jordan algebra by Proposition 3.1. It is then seen directly from 

its structure that it is a reduced Jordan algebra of degree 2. It is isomorphic to 

a Jordan algebra of a quadratic form [J3, pp. 13-14 and pp. 202-203]. We now 

describe the structure precisely. Let Vl C o~ be the set of all matrices in the 

kernel of the trace form: 

V~ = {A • ~ :  T(A) = O}. 

Observe that d is a nondegenerate quadratic form on Vt and that dim Vt ---- 

21 + 1. The associated symmetric bilinear form b on Vl is given by b(A, B) = 
1 (d(A + B ) -  d ( A ) -  d(B)). The Jordan algebra ~ is isomorphic to the Jor- 2 
dan algebra J(Vl) = £( I )  ® V1 whose product is given by ( a I  + A) o (~I + B) = 

(o4~ + b(A, B)) I+c~B+/3A for a,/~ • F and A, B • V~. The Jordan algebra J(Vz) 

is special, i.e., it is a Jordan subalgebra of an associative algebra with respect to 

the Jordan product xoy = ½(xy+yx). By [J3, Thin. 1, p. 261] we know that  J(Vl) 

is a Jordan subalgebra of the Clifford algebra C(V~, d). Let p: J(V~) -+ C(Vt, d) 

be the imbedding of Jordan algebras given by p(c~I + A) -- a I  + A + iT, where 

C(VI, d) ~ TVI/5[ and I is the ideal of the tensor algebra TVI generated by ele- 

ments d ® d - d(A)I, A • V~ (see [J3, pp. 260 261]). 

It was pointed out by the referee that C(VI, d) and ~ are closely related: the 

Clifford algebra C(V~, d) is the special universal envelope of o~ [J3, pp. 74-75]. 

The automorphisms of the Jordan algebra Y(Vi) were determined by Jacobson 

and McCrimmon [JM]. Here we give their matrix version for ~ .  We wish to 

remind the reader that the map A --~ A on ~ is defined in the first paragraph of 

§2. 
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LEMMA 5.1: The linear maps ¢1,~b2: *Jl --~ Jl defined by ¢1(A) = A and 
¢2 (A) = A T are automorphisms of the Jordan algebra 3 .  Furthermore, 

¢1(A) = KI¢2(A)K1-1 for all A E 3 ,  

( 0 1 1 )  a n d K l = (  0 K~-I) forl>2.  where K1 = _ 0 K~-I 

Proof: Since (A21--) / \(~}2 = and (A2) T -- (AT) 2 it follows that ¢1 and ¢2 
\ ] 

are Jordan homomorphisms. Clearly they are bijective. To prove the relation 

between them we proceed by induction on I. Suppose first that 1 = 1. If A = 

( :  bd) is an element ° f ' J l  then 

1 a K 1 A T K ~ I = ( O I  O ) ( b  Col)(~ O 1 ) = (  d ~ ) = ' 4 "  

Now assume that 
g t _ l  ATK[-_~ = 

aI A ) 
for a l l A E 3 _ l  and c h o o s e B =  A /31 C ~ .  Then 

( )( ) K~BT K;_ 1 0 Kl-1 aI 0 -K~-I 
= Kl-1 0 A T flI - K z - 1  0 

/~I -KI_IBTKI_I ) 
= --KI_IBTKI_I aI " 

By the induction hypothesis the last matrix above is equal to 

THEOREM 5.2: If ¢ is an automorphism of the Jordan algebra ~ then either 

¢(A) = SAS -1 for a11A c 

or 
~(A) = SKIATKi-IS -1 for all A E 3 ,  

where S is a product of invertible matrices from Vt, and Kt is given in Lemma 
5.1. 

Proof: The automorphism ¢ induces an automorphism ¢: J(Vl) --+ J(Vz). It 
maps I to I and we want to show that it maps V~ onto itself. Assume that 
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A C Vt is nonzero and that  ¢(A) = /~ I  + B. Since ~b is one-to-one it follows that 

B ¢ 0. Then we have that d(A)I  = ¢ (d (A) I )  = ¢(A 2) = ¢(A) 2 = (~I + B) 2 = 

(~2 + d(B))  I + 2~B. It follows that /~ = 0 and that d(A) = d(¢(A)). Now we 

see that ¢ induces an automorphism of the quadratic space (Vl, d) and, moreover, 

an automorphism of the Clifford algebra d(Vl, d). Since dim Vl is an odd number 

and F is algebraically closed it follows that d(Vl, d) is isomorphic, say via an 

isomorphism X, to the direct sum M 2, (F) • M2t (F) (see, e.g., [D, Tam. VIII.8 

and Cor. VIII.11]). From the construction of the isomorphism ) / i n  the proof 

of [D, Thm. VIII.8] we see that each copy of M2~(F) contains a copy of the 

Jordan algebra J(Vt). So we may assume that p: ~ -+ M 2, (F) C d(Vl, d). Each 

automorphism of a quadratic space is either of the form 

~b(A) = S A S  -1 for all A E Vl 

or of the form 

¢(A) = - S A S  -1 for all A E Vl, 

where S is a product of invertible matrices from Vt and the product S A S  -1 is 

taken in the Clifford algebra C(VI, d) (see [D, p. 352]). Note that :~ -- - A  for 

A E Vi. Then Lemma 5.1 implies that KL (aI  + A) T K[  -1 = a I  - A for a C F 

and A E VL. The result now follows easily. | 

The following theorem resolves the case k > 3. It is a result of Ancochea [An] 

(see also Jacobson [J1, Thin. 2]). Recall that by the Skolem-Noether Theorem 

(see, e.g., [C, Cor. 7.1.8]) every automorphism of Mk(F)  is inner and that the 

transposition is an antiautomorphism of Mk (F). 

I f  ¢: Mk(F)  -+ Mk(F)  is an automorphism of Jordan algebra THEOREM 5.3: 
then either 

o r  

¢(A) = S A S  -~ for all A E Mk(F)  

¢(A) = SAT S -1 for all A E Mk(F),  

where S is an invertible matrix. 

6. Maximal  Jordan algebras with property  (Pk) 

If a Jordan algebra A C Mn(F)  with property (Pk) is not irreducible then there 

exists a maximal nontrivial invariant subspace U C F n for ,4 and complementary 

subspace W C F ~ such that  F n -- U • W and each element in A is of the form 
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Let Pw: F '~ -+ W be the projection on W along U. Then it is easy to see 

that Au  = {A]u: A • ,4} and A w  = {PwAIw: A • .4} are Jordan algebras 

with property (Pr),  r _< k. If either of them is not irreducible we continue the 

procedure until we have a decomposition F '~ = V1 @ V2 @ . "  @ Vt such that all 

the Jordan algebras As = .4v~ are irreducible. We call the Jordan algebras .4~ 

irreducible components of .4. 

Suppose that there exists an integer l such that all the irreducible components 

.4i are isomorphic to 5 -  Let H be a subset of {2, 3 , . . . ,  t}. Then we denote by 

.42,l,H the Jordan algebra of all block upper-triangular matrices with the j - th  

diagonal block equal to B if j ~ H and B w if j • H for some B • 5 .  

THEOREM 6.1: I f  .4 is a maximal Jordan algebra with property (P2) such that 

each of the irreducible components .4i, i = 1, 2 , . . . ,  t, has property (P2) then 

there exists l • N and a subset H C {2, 3 , . . . ,  t} such that .4 is simultaneously 

similar to the Jordan algebra .42,/,H. 

Proof'. If t = 1 then the theorem follows by Theorem 2.3. Suppose now that 

t > 2. By irreducibility it follows that each Ai is isomorphic to Jordan algebra 

5 for some l. Let U = V1 • Vj for some j ¢ 1. For each element A E A we write 

B 
= 

Suppose that A E `4 is such that A1 = 0. We want to show that then Aj = O. 

We define 

Observe that CAj  + A j C  • Af for all Aj • `4j and C • Af. Then it follows that 

Af must be a Jordan algebra with property (P1). So the intersection K of the 

kernels of all the nilpotent elements in Af is a nonzero invariant subspace for `4j. 

By the irreducibility of ,4j it follows that K = Vj and thus Af consists of scalar 

matrices only. Since A1 has property (P2) it follows that Af = 0. Thus the map 

Cj: A1 --+ Aj given by Cj(A1) = Aj for A~ • A~ such that  there is an A • A 

with 

is well defined. If we exchange the roles of A1 and `4j above we see that Cj 

is injective. It is also surjective and a Jordan algebra homomorphism, thus it 

is an isomorphism. Since .4 is maximal with property (P2) also `4i for i = 
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1, 2 , . . . ,  t is maximal with property (P2). It is irreducible and by Theorem 2.3 it 

is simultaneously similar to ~ for some I. Assume that  all .Ai are already equal 

to ~ .  By maximality of.A the blocks above the block-diagonal are arbitrary. By 

Theorem 5.2 it follows that for each j = 2, 3 , . . . ,  t, either 

C j ( A ) = S A S - 1  for a l l A E A 1  

or  

Cj(A) = S A T S  -1 for all A E ,41, 

for some invertible matrix S depending on j .  Now let H be the set of all j such 

that Cj involves transposition. It follows then that .4 is simultaneously similar 

to ~A2,I, H . I1 

Suppose that  all the irreducible components Ai are isomorphic to Mk(F),  

k _> 3. Let H be a subset of {2, 3 , . . . ,  t}. Then we denote by .Ak,H the Jordan 

algebra of all block upper-triangular matrices with the j - th  diagonal block equal 

to B i f j  ¢ H and B T i f j  E H for some B E Mk(F).  

The proof of the following result uses Theorems 3.2 and 5.3 and is similar to 

the proof of Theorem 6.1. 

THEOREM 6.2: If  A is a maximal Jordan algebra with property (Pk), k _> 3, 

such that all of the irreducible components of A have property (Pk) then all the 

irreducible components are isomorphic to Mk ( F) and ,4 is simultaneously similar 

to a Jordan algebra Ak,H for some subset H C {2, 3 , . . . ,  t}. 

The following result follows directly from Theorem 4.5. 

THEOREM 6.3: A Jordan algebra A with property (Pk) with all its simple parts 

of dimension 1 is isomorphic to one of the Jordan algebras of upper-triangular 

matrices with k sets of linked entries on the diagonal and arbitrary entries above 

the diagonal Moreover, two such Jordan algebras are isomorphic if  and only if  

they can be obtained from each other by applying the flip. 

If at least one of the irreducible components of ,4  has property (P j )  with j < k 

then the irreducible components have property (Pri) with ri < k and k is equal 

to the sum of all the values of ri that  appear in blocks that are not linked. 

The Jordan algebra .4 is simultaneously similar to a Jordan algebra A in block 

upper-triangular form, where for those ri that are different from 2 the diagonal 

blocks corresponding to irreducible components with property (Pri)  are equal 

to the full matrix algebra Mr~ (F). The diagonal blocks corresponding to the 

irreducible components with r~ = 2 are equal to ~ for some I. 
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In case distinct r i 's  do occur we do not give a complete list of non-isomorphic 

Jordan algebras with property (Pk). The generalization of Theorem 4.5 to the 

block upper-triangular case would give a result similar to Theorem 6.3, and hence 

a complete classification of Jordan algebras with property (Pk). However, the 

calculations required for such a generalization appear to be technically quite 

formidable. 
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